Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Imaging Neurosci (Camb) ; 1: 1-23, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37719838

RESUMO

It is well established that one's confidence in a choice can be influenced by new evidence encountered after commitment has been reached, but the processes through which post-choice evidence is sampled remain unclear. To investigate this, we traced the pre- and post-choice dynamics of electrophysiological signatures of evidence accumulation (Centro-parietal Positivity, CPP) and motor preparation (mu/beta band) to determine their sensitivity to participants' confidence in their perceptual discriminations. Pre-choice CPP amplitudes scaled with confidence both when confidence was reported simultaneously with choice, and when reported 1 second after the initial direction decision with no intervening evidence. When additional evidence was presented during the post-choice delay period, the CPP exhibited sustained activation after the initial choice, with a more prolonged build-up on trials with lower certainty in the alternative that was finally endorsed, irrespective of whether this entailed a change-of-mind from the initial choice or not. Further investigation established that this pattern was accompanied by later lateralisation of motor preparation signals toward the ultimately chosen response and slower confidence reports when participants indicated low certainty in this response. These observations are consistent with certainty-dependent stopping theories according to which post-choice evidence accumulation ceases when a criterion level of certainty in a choice alternative has been reached, but continues otherwise. Our findings have implications for current models of choice confidence, and predictions they may make about EEG signatures.

2.
Front Behav Neurosci ; 17: 1096720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091594

RESUMO

Introduction: Millions of people worldwide take medications such as L-DOPA that increase dopamine to treat Parkinson's disease. Yet, we do not fully understand how L-DOPA affects sleep and memory. Our earlier research in Parkinson's disease revealed that the timing of L-DOPA relative to sleep affects dopamine's impact on long-term memory. Dopamine projections between the midbrain and hippocampus potentially support memory processes during slow wave sleep. In this study, we aimed to test the hypothesis that L-DOPA enhances memory consolidation by modulating NREM sleep. Methods: We conducted a double-blind, randomised, placebo-controlled crossover trial with healthy older adults (65-79 years, n = 35). Participants first learned a word list and were then administered long-acting L-DOPA (or placebo) before a full night of sleep. Before sleeping, a proportion of the words were re-exposed using a recognition test to strengthen memory. L-DOPA was active during sleep and the practice-recognition test, but not during initial learning. Results: The single dose of L-DOPA increased total slow-wave sleep duration by approximately 11% compared to placebo, while also increasing spindle amplitudes around slow oscillation peaks and around 1-4 Hz NREM spectral power. However, behaviourally, L-DOPA worsened memory of words presented only once compared to re-exposed words. The coupling of spindles to slow oscillation peaks correlated with these differential effects on weaker and stronger memories. To gauge whether L-DOPA affects encoding or retrieval of information in addition to consolidation, we conducted a second experiment targeting L-DOPA only to initial encoding or retrieval and found no behavioural effects. Discussion: Our results demonstrate that L-DOPA augments slow wave sleep in elderly, perhaps tuning coordinated network activity and impacting the selection of information for long-term storage. The pharmaceutical modification of slow-wave sleep and long-term memory may have clinical implications. Clinical trial registration: Eudract number: 2015-002027-26; https://doi.org/10.1186/ISRCTN90897064, ISRCTN90897064.

3.
Cogn Psychol ; 135: 101472, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35364511

RESUMO

Motivation can improve performance when the potential rewards outweigh the cost of effort expended. In working memory (WM), people can prioritise rewarded items at the expense of unrewarded items, suggesting a fixed memory capacity. But can capacity itself change with motivation? Across four experiments (N = 30-34) we demonstrate motivational improvements in WM even when all items were rewarded. However, this was not due to better memory precision, but rather better selection of the probed item within memory. Motivational improvements operated independently of encoding, maintenance, or attention shifts between items in memory. Moreover, motivation slowed responses. This contrasted with the benefits of rewarding items unequally, which allowed prioritisation of one item over another. We conclude that motivation can improve memory recall, not via precision or capacity, but via speed-accuracy trade-offs when selecting the item to retrieve.


Assuntos
Memória de Curto Prazo , Motivação , Atenção , Humanos , Memória de Curto Prazo/fisiologia , Rememoração Mental , Recompensa
4.
J Vis ; 20(13): 6, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33289797

RESUMO

Studying the sources of errors in memory recall has proven invaluable for understanding the mechanisms of working memory (WM). While one-dimensional memory features (e.g., color, orientation) can be analyzed using existing mixture modeling toolboxes to separate the influence of imprecision, guessing, and misbinding (the tendency to confuse features that belong to different memoranda), such toolboxes are not currently available for two-dimensional spatial WM tasks. Here we present a method to isolate sources of spatial error in tasks where participants have to report the spatial location of an item in memory, using two-dimensional mixture models. The method recovers simulated parameters well and is robust to the influence of response distributions and biases, as well as number of nontargets and trials. To demonstrate the model, we fit data from a complex spatial WM task and show the recovered parameters correspond well with previous spatial WM findings and with recovered parameters on a one-dimensional analogue of this task, suggesting convergent validity for this two-dimensional modeling approach. Because the extra dimension allows greater separation of memoranda and responses, spatial tasks turn out to be much better for separating misbinding from imprecision and guessing than one-dimensional tasks. Code for these models is freely available in the MemToolbox2D package and is integrated to work with the commonly used MATLAB package MemToolbox.


Assuntos
Memória de Curto Prazo/fisiologia , Memória Espacial/fisiologia , Idoso , Feminino , Percepção de Forma/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Psicológicos , Testes Neuropsicológicos , Orientação Espacial/fisiologia
5.
Elife ; 92020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001026

RESUMO

We can be motivated when reward depends on performance, or merely by the prospect of a guaranteed reward. Performance-dependent (contingent) reward is instrumental, relying on an internal action-outcome model, whereas motivation by guaranteed reward may minimise opportunity cost in reward-rich environments. Competing theories propose that each type of motivation should be dependent on dopaminergic activity. We contrasted these two types of motivation with a rewarded saccade task, in patients with Parkinson's disease (PD). When PD patients were ON dopamine, they had greater response vigour (peak saccadic velocity residuals) for contingent rewards, whereas when PD patients were OFF medication, they had greater vigour for guaranteed rewards. These results support the view that reward expectation and contingency drive distinct motivational processes, and can be dissociated by manipulating dopaminergic activity. We posit that dopamine promotes goal-directed motivation, but dampens reward-driven vigour, contradictory to the prediction that increased tonic dopamine amplifies reward expectation.


Assuntos
Dopamina/farmacologia , Motivação/efeitos dos fármacos , Idoso , Antecipação Psicológica/efeitos dos fármacos , Medições dos Movimentos Oculares , Feminino , Humanos , Masculino , Doença de Parkinson/psicologia , Recompensa , Movimentos Sacádicos/efeitos dos fármacos
6.
Brain Neurosci Adv ; 4: 2398212820907177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32219179

RESUMO

Deficits in reward processing are a central feature of major depressive disorder with patients exhibiting decreased reward learning and altered feedback sensitivity in probabilistic reversal learning tasks. Methods to quantify probabilistic learning in both rodents and humans have been developed, providing translational paradigms for depression research. We have utilised a probabilistic reversal learning task to investigate potential differences between conventional and rapid-acting antidepressants on reward learning and feedback sensitivity. We trained 12 rats in a touchscreen probabilistic reversal learning task before investigating the effect of acute administration of citalopram, venlafaxine, reboxetine, ketamine or scopolamine. Data were also analysed using a Q-learning reinforcement learning model to understand the effects of antidepressant treatment on underlying reward processing parameters. Citalopram administration decreased trials taken to learn the first rule and increased win-stay probability. Reboxetine decreased win-stay behaviour while also decreasing the number of rule changes animals performed in a session. Venlafaxine had no effect. Ketamine and scopolamine both decreased win-stay probability, number of rule changes performed and motivation in the task. Insights from the reinforcement learning model suggested that reboxetine led animals to choose a less optimal strategy, while ketamine decreased the model-free learning rate. These results suggest that reward learning and feedback sensitivity are not differentially modulated by conventional and rapid-acting antidepressant treatment in the probabilistic reversal learning task.

7.
Elife ; 62017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28691905

RESUMO

Emerging evidence suggests that dopamine may modulate learning and memory with important implications for understanding the neurobiology of memory and future therapeutic targeting. An influential hypothesis posits that dopamine biases reinforcement learning. More recent data also suggest an influence during both consolidation and retrieval. Eighteen Parkinson's disease patients learned through feedback ON or OFF medication, with memory tested 24 hr later ON or OFF medication (4 conditions, within-subjects design with matched healthy control group). Patients OFF medication during learning decreased in memory accuracy over the following 24 hr. In contrast to previous studies, however, dopaminergic medication during learning and testing did not affect expression of positive or negative reinforcement. Two further experiments were run without the 24 hr delay, but they too failed to reproduce effects of dopaminergic medication on reinforcement learning. While supportive of a dopaminergic role in consolidation, this study failed to replicate previous findings on reinforcement learning.


Assuntos
Dopaminérgicos/administração & dosagem , Memória/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Reforço Psicológico , Idoso , Feminino , Humanos , Masculino , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...